

- Implementation of full image processing pipeline on GPU for real time camera applications

We can do that faster and with better quality in comparison with solutions on CPU, DSP, FPGA GPU Image Processing SDK from Fastvideo

Real time image processing

- Industrial cameras with high resolution and high frame rate

Multiple camera systems
Broadcasting solutions
High speed cameras
What is common for all cases: data rates up to ~GPix/s

Image Processing in Realtime

Modern machine vision cameras

- Image sensor resolution from VGA to 30 Mpix
- Frame rate up to 500 fps
- Bit depth: $8-12$ bits
- High speed interface to PC
- Multiple camera systems

- Image sensor with high data rate
- External interface to send data to PC

Adapter or frame grabber to get data on PC side
Software for real time data acquisition and image processing

Modern Image Sensors

Fastvideo

Model	Resolution	Frames per second	Bits	Dafa rate
CMOSIS CMV20000	5120×3840	30 fps	$8 / 12 \mathrm{bit}$	$560 \mathrm{Mpix} / \mathrm{s}$
CMOSIS CMV12000	4096×3072	100 fps	$8 / 12 \mathrm{bit}$	$1200 \mathrm{Mpix} / \mathrm{s}$
Onsemi VITA 25K	5120×5120	53 fps	$8 / 10 \mathrm{bit}$	$1325 \mathrm{Mpix} / \mathrm{s}$
Onsemi LUPA 3000	1696×1710	485 fps	$8 / 10 \mathrm{bit}$	$1340 \mathrm{Mpix} / \mathrm{s}$
Alexima AM41	2368×1728	$500+\mathrm{fps}$	$8 / 10 \mathrm{bit}$	$>2000 \mathrm{Mpix} / \mathrm{s}$

External Camera Interfaces

	GigE	IEEE 1394 b	USB-3.0	CameraLink	CoaXPress	PCIE x8 Gen2
Data rate (one cable)	$1 \mathrm{~Gb} / \mathrm{s}$	$0.8 \mathrm{~Gb} / \mathrm{s}$	$6 \mathrm{~Gb} / \mathrm{s}$	$2.5 \mathrm{~Gb} / \mathrm{s}$ (Base)	$3.125 \mathrm{~Gb} / \mathrm{s}$	$8 * 5 \mathrm{~Gb} / \mathrm{s}$
Max data rate	$1 \mathrm{~Gb} / \mathrm{s}$	$0.8 \mathrm{~Gb} / \mathrm{s}$	$6 \mathrm{~Gb} / \mathrm{s}$	$6.8 \mathrm{~Gb} / \mathrm{s}($ Full) over 2 cables	$25 \mathrm{~Gb} / \mathrm{s}$ over 4 cables	$40 \mathrm{~Gb} / \mathrm{s}$ over 1 cable
Max cable length	100 m	5 m	100 m	10 m	70 m	$7.5 \mathrm{~m} / \sim \mathrm{km}$
Cable type	Cat5	--	--	MDR26	Coaxial	Copper / Fiber

Near Future: PCI-Express Cameras

XIMEA xiB series with fiber optics interface

- Image sensor CMOSIS CMV20000 with resolution 20 Mpix
- Frame rate: 30 fps , Global Shutter
- Size: $60 \times 60 \times 38 \mathrm{~mm}$, Power: 4.5 W
- Bit depth: 12 bits
- Real data throughput up to $1700 \mathrm{MB} / \mathrm{s}$
- Synchronization via opto-isolated GPIO
- Canon EF-mount active lens interface
- Remote control of aperture, focus and zoom

Advantages of PCI-Express Cameras

- PCI-Express - modern industry standard
- One of the fastest interfaces on PC (high bandwidth)
- PCIE Hard IP from FPGA manufacturers
- PCIE IP Cores and drivers (Windows, Linux)
- Integration with fiber optics cables (long cable)
- No need in frame grabbers
- Camera has direct and fast access to CPU/GPU memory

Possible Solutions for Image Processing

- In-Camera HW processing on FPGA, DSP, CPU
- Image processing on frame grabber
- Image processing on CPU with SSE/AVX
- Image processing on GPU

Basic Image Processing Pipeline

- Image Acquisition

Preprocessing

Demosaicing
Resize / OpenGL output
JPEG compression

Extended Image Processing Pipeline

- GPU Direct option to get images on GPU from a camera
- Unpacking module for various raw formats
- Wavelet denoising
- Color correction
- Image tiling and batch processing
- Crop/Resize/Sharp and pyramid images
- OpenGL output
- MJPEG integration with FFMPEG

Camera-to-PC data transfer over cables
Image acquisition on PC side

- Data transfer to CPU memory

RDMA GPUDirect

RDMA for GPUDirect

Solution to get data at GPU with min latency

- Choose right GPU and 64-bit Linux OS
- Grabber and GPU should share the same root complex
- Driver modification (memory allocation on GPU)

DMA data transfer from camera to GPU over PCI-Express

Image Preprocessing on GPU

Fastvideo

- Image data unpacking and rearranging
- Fixed-Pattern Noise subtraction
- Vignetting

Bad pixels removal
White balance

Image Demosaicing (Debayer)

Demosaicing means image color interpolation from Bayer image sensor (input data 8 bits, output data 24 bits)

Ideas for high quality demosaicing

Fastvideo

- Raw Bayer data prefiltering
- Local gradient calculations
- Green plane interpolation and filtering
- R-G and B-G interpolation

Performance of Demosaic Algorithms

- Bilinear - bilinear interpolation for each pixel
- HQLI - High Quality Linear Interpolation with 5×5 kernels
- AHD - Adaptive-Homogeneity-Directed algorithm
- DFPD - Directional Filtering with a Posteriori Decision

	Bilinear	HQLI	AHD	DFPD
Fastvideo on Titan GPU		$2400 \mathrm{MB} / \mathrm{s}$		$1770 \mathrm{MB} / \mathrm{s}$
IPP on CPU Core i7 3770	$2800 \mathrm{MB} / \mathrm{s}$		$14 \mathrm{MB} / \mathrm{s}$	
GPU kernel performance		$21000 \mathrm{MB} / \mathrm{s}$		$6000 \mathrm{MB} / \mathrm{s}$
SSIM	0.873	0.965	0.968	0.978
PSNR (dB)	30.4	36	37.4	39

Image Denoising on GPU

Wavelet Denoising with Thresholding

CDF discrete wavelet transform
Hard or soft thresholding with edge preservation
Inverse DWT

Image Tiling on GPU

- Real time image partitioning
- Quick method to retrieve ROI with min overhead

No additional artifacts because JPEG is block-based
Tiling means data rearrangement in GPU memory

- Where we need resize: almost for any image on PC, laptop, projector, tablet PC, smartphone, TV, etc.

Who need that: any user
What we need: quality and performance
Solution: image downsize prior to show it on monitor

Image Resize Quality

- Bicubic (Photoshop)
- Wavelet CDF 9/7
- Fastvideo HQ
- Method: downsampling + upsampling
- Metrics: PSNR (dB)

Scaling ratio	1.1	1.3	1.5	1.7	2.0	3.0	4.0	$\mathbf{6 . 0}$	$\mathbf{8 . 0}$
Bicubic	52.4	50.4	49.1	48.1	46.8	43.4	40.6	36.8	34.7
Wavelet 9/7					47.7		41.3		35.4
Fastvideo HQ	56.6	52.6	51.0	49.9	48.0	44.8	41.9	38.1	35.7

Fastvideo

All data is already in GPU memory
All we need - just to show data on the screen
No need in resize, image is ready
Minimum latency for image output

In 2011 we have created the first fully parallel CUDA JPEG codec.

Main idea: JPEG algorithm consists of consecutive stages and it's applied to blocks 8×8 or 16×16 pixels. Parallel block handling for all stages is a must for fast JPEG codec.

Key for fast decoding: presence of Restart Markers in bitstream.

- Compliance with JPEG Baseline Standard
- JPEG quality from 1 to 100%
- Subsampling modes 4:2:0; 4:2:2; 4:4:4
- JPEG Encoding 2500 - $5500 \mathrm{MB} / \mathrm{s}$ on GeForce GTX Titan
- JPEG Decoding 2000 - 5000 MB/s on GeForce GTX Titan

CUDA JPEG results for 580/680/Titan

Host-to-Device and Device-to-Host transfers are included Win-7 (32-bit), NVIDIA drivers 332.21

FASTVIDEO JPEG INIDIA GEFORCE GTX 580, 680, TITAN) | LIBJPEG-TURBO WITH FASTDCT AND SSE3 OPTIONS IINTEL CORE 17-37701 INTEL IPP-7.1 JPEG IMULTITHREADEDI IINTEL CORE 17-3770)

- JPEG is not always guilty for insufficient image quality
- There are other lossy (irreversible) stages in the pipeline:
- Preprocessing
- Demosaicing
- Denoising

LUT
Resize / Sharp

Solution: use "visually lossless" JPEG quality 85-100\% and always check quality losses for other stages of the pipeline

Combined Demosaic + JPEG

- Tripled data size after demosaicing
- Transfer time over PCI-Express bus is important
- Combined solution saves time for CPU-GPU transfers
- Low-quality demosaic is unacceptable

Performance benchmarks for Demosaic and JPEG Encoder

	$\mathbf{1 9 2 0 \times 1 0 8 0}$	$\mathbf{2 0 4 8 \times 2 0 4 8}$	$\mathbf{4 0 9 6 \times 4 0 9 6}$
Demosaic (DFPD)	1.6 ms	3.0 ms	10.2 ms
JPEG (90\%, 4:2:0)	2.3 ms	3.2 ms	10.5 ms
Demosaic + JPEG	2.6 ms	3.7 ms	11.7 ms

Image Quality for Demosaic + JPEG

Final Benchmark on GPU (Titan)

- CMOSIS image sensor CMV20000, 5120x3840, 12-bit, 30 fps
- GPU GeForce GTX Titan
- Host to device transfer $\sim 1.5 \mathrm{~ms}$
- Demosaic ~3.1 ms
- JPEG encoding (90\%, 4:2:0) ~7.8 ms
- Device to Host transfer $\sim 1.3 \mathrm{~ms}$
- Total: ~13.7 ms
P.S. This is the benchmark for PCIE camera xiB-20 from XIMEA

We need batch mode to get maximum GPU performance

- Preprocessing
- Demosaicing
- Denoising
- Tiling
- Resizing
- JPEG encoding

Integration with FFMPEG

Fastvideo

- Compatibility with various video containers

MJPEG output format for camera stream
Interoperability with other applications

- Concatenation of simple CUDA kernels to reduce Global Memory I/O (all stages of DFPD demosaic algorithm are integrated in one kernel)
- Register cache to reduce Shared Memory I/O
- Two code paths: one for central area and another for the edges
- Careful resource management (registers, shared memory) for optimal SMX utilization
- Reduce communications between Host and Device by moving all processing to GPU
- Machine vision and computer vision
- XIMEA solutions - www.ximea.com
- Imperx solutions - www.imperx.com
- Multi-camera image processing on single GPU
- Real time image processing for broadcasting
- Video conferencing
- High speed imaging

XIMEA Applications

Flat panel display control
Printed circuit board examination

- Persistent stadium/border security, wide area surveillance
- City and aerial mapping, UAV

High definition scanner

29 MP@5FPS CCD Camera built on TRUESENSE image sensor

- Aerial imaging
- Medical and scientific imaging
- Automation and Inspection

Bayer Demosaicing performance

- 91 ms for Intel IPP Fast algorithm (Intel® Core ${ }^{\text {TM }} \mathrm{i} 7-3770 @ 3.4 \mathrm{GHz}$)
- 33 ms for DFPD high-quality algorithm (GeForce GTX 650 Ti, 2 GB)
- Image processing speedup to image viewers, photo editors
- High performance batch image processing
- Fast resize and thumbnail generation
- Cloud solutions for image processing
- Medical imaging

Standard Task for Photo Hosting

- Get HTTP query from remote user
- Find corresponding image in database
- Load full-size JPEG image from database to CPU memory
- JPEG decoding
- Image resizing according to resolution of user's device JPEG encoding
- Store image to HDD/SSD or send it to remote user

Benchmark for Photo Hosting Task

Task description: Load-Decode-Resize-Encode-Store

- Image load ~1.5 ms for 2048×2048 jpg image
- JPEG decoding ~3.4 ms
- Downsize to 1024×1024 with bicubic algorithm $\sim 0.7 \mathrm{~ms}$ JPEG encoding (quality 90\%, 4:4:4) ~3.4 ms
- Image store $\sim 1.0 \mathrm{~ms}$
- GPU processing time $\sim 7.5 \mathrm{~ms}$ (133 images per second)
- Total time $\sim 10 \mathrm{~ms}$

What's New in Photo Hosting Solution

- This is GPU-based solution
- Very high performance
- Opportunity to use better sharp and resize algorithms
- Improved accuracy for the whole pipeline (float DCT in/out)

Excellent scalability

This sample project is included in Fastvideo Demo SDK

What we could offer to our customers

- Standard GPU Image Processing SDK
- Preprocessing functions
- Demosaic
- LUT
- Resize + OpenGL

JPEG Encoder and Decoder

- Custom SDK for particular task
- Algorithm design
- Software optimization

High quality resize (downsampling and upsampling)
12-bit JPEG
Batch mode optimization for JPEG codec
Design of better 16-bit Demosaic

- More image processing algorithms in our SDK
- More complicated parallel algorithms with higher quality
- JPEG2000 and more lightweight custom codecs
- Code optimization, use of the latest GPUs and APIs
- Parallel algorithm design and implementation

The Most Important Results

High speed and high quality Demosaic on GPU
Super fast CUDA JPEG Codec
SDK for full image processing pipeline on GPU

- Fastvideo site for GPU image processing www.fastcompression.com
- Contacts: info@fastcompression.com

Camera manufacturers with GPU image processing software

- XIMEA GmbH - www.ximea.com
- Imperx Inc. - www.imperx.com

